
Data Integration in a Three-Layer Mediation Framework

Qasem Kharma, Raimund K. Ege, Onyeka Ezenwoye, Li Yang
Secure System Architecture Laboratory

School of Computer Science
Florida International University, Miami, FL 33199

{qkhar002|ege|oezen001| lyang03}@cs.fiu.edu

Abstract

Our distributed mediation architecture employs a

layered framework of presence, integration, and
homogenization mediators. In order to find a mediation
path from a client request to data sources, a Distributed
Hash Table (DHT) algorithm is deployed in the integration
layer. A designated global-mediator in the integration layer
initiates the keyword based matching decomposition of the
request with the used of the DHT. It generates an
Integrated Data Structure Graph (IDSG), creates
association and dependence relations between nodes in the
IDSG, and then it generates a Global IDSG (GIDSG).
GIDSG is used to stream data from the mediators in the
homogenization layer where they connect to the data
sources. The architecture is dynamic, scalable and does
not have any central point of failure. In this paper we
present our research on the use of the GIDSG for the
integration of data in our three-layer mediation
architecture.

Keywords: mediator, middleware, software

architecture, integration, P2P, DHT.

1. Introduction

The proliferation of modern information systems has

enabled access to a multitude of disparate but often related
information. This information - in the form of multimedia
data - is stored on and accessed from various kinds of
heterogeneous devices. There is a need for mediators [20]
that harmonize and present the information available in
heterogeneous data sources. This harmonization comes in
the form of identification of semantic similarities in data
while masking their syntactic differences. Relevant and
related data is then integrated and presented to a higher
layer of applications. The sourcing, integration and
presentation of information can then be seen as logically
separated mediator roles and forms the basis for the three-
layer mediator architecture [5, 13, 12]

The research reported on here is a part of our ongoing
effort to define and build a multi-layered mediator
architecture that will provide a dynamic and scalable

framework for information delivery. The architecture is
based on three layers; presence, integration and
homogenization. The high-level goal of the presence layer
is acceptance of requests (queries) from clients and the
presentation of the results of those queries. The
intermediate level goal of this layer is to make sure the
quality of service (QoS) criteria of these requests is met
[12]. The main steps taken to achieve this include the
monitoring and advertising the QoS parameters of the
client/query, the election of a global-mediator for the query,
caching and buffer of result stream and if necessary the
manipulation of the results to suit the desired QoS. The
data interchange language between our mediators is XML.
Queries are converted to XML in the presence layer before
the search; results are converted back from XML to the
desired format in this layer. The decomposition of the
XML query, its distribution (search) and integration of the
results is done at the integration layer. The third layer,
homogenization, is where connection to actual data sources
is established. Data from these heterogeneous data sources
are converted from their individual data formats to a
common data language of the mediators, in this case XML.
The mediators in this layer act as wrappers to the data
sources. Figure 1 depicts the framework. The integration
layer consists of mediators that successively decompose a
XML request into smaller XML requests that are closer to
the data sources that are served-up by the homogenization
layer.

The focus of this paper is the integration layer. The
integration layer represents a special kind of knowledge
which is the composition/decomposition of XML schemas
and routes. Instead of maintaining a central schema
repository server which manages and handles all schemas,
we opt for a distributed search mechanism that uses the
mediators in the integration layer as nodes in a Distributed
Hash Table (DHT).

DHT algorithms can be classified into three categories
[2]: Skiplist-like routing algorithms such as the Chord
algorithm [18], Routing-in-Multiple dimensions algorithms
such as the CAN algorithm [14], and Tree-like algorithms
such as the Pastry algorithm [16]. DHT algorithms can also
be classified according to their basic routing geometries [7],
such as tree, hypercube, butterfly, ring, XOR, and hybrid.
The general idea of DHT is that each node maintains

Cop
y R

igh
ts

information about its neighbors in the system. No node has
all the information, and some information is duplicated so
when a node fails, the whole system will not fail.

Section 2 covers the related work in the mediation and
data integration in particular. Section 3 describes the three-
layer architecture and the data integration process. In
section 4, we use an example to demonstrate the schema
generation, distribution and integration in the architecture.
Section 5 concludes the paper.

2. Related Work

A lot of work has been done on mediation systems [6,

19, 21, 15, 11, 10, 9]. As stated in [11, 9], most of these
architectures however are centralized, in that, there is a
single mediator through which query decomposition, result
integration and access to heterogeneous sources is
achieved. Like our architecture, some [11, 19, 21] mediator
architectures are distributed and mediators are able to
access and communicate with each other. [21] is a two-tier
mediation model that comprises a homogenization and
integration layer with mediators in each that playing similar
roles as in our architecture. [11] on the other hand does not
have any restrictions on mediator functions as each
mediator can play the role of homogenization and/or
integration. There is also no restriction as to the number of
mediator tiers. [11] and [21] employ a similar integration
process for homogenized sources [11].

Our architecture is a three-layer model that consists of
the presence, integration and homogenization layers. Our
architecture does not only accommodate heterogeneous
data sources but also with the aid of the presence layer
mediators adapts to the heterogeneous nature of the client
devices by taking into account various QoS issues of the
client. [11] is a peer mediation system much like ours but
unlike our model, it does not employ the use of the DHT in
the distribution of source schema and peer lookup.

Most of the aforementioned frameworks use trees or
graphs to integrate heterogeneous data sources and hide
unrelated detail from the integration process. Our
framework uses the IDSG to integrate schema (structure).

[1] proposes a middleware that is based on order label
tree to integrate heterogeneous data. The authors introduced
formal description of the correspondence between the tree
nodes by using two predicates: "is", which links similar real
world entities, and "concat", which is a standard
concatenation. Moreover, a rule-based language was
introduced to define the correspondences among
heterogeneous data sources.

[3] describes structural recursion functions on labeled
trees that can be used for unstructured data. The defined
functions were also applied to cyclic structure. [3] can be
considered as fundamental theories of using tree/graph in
data integration.

[8] integrates XML-based sources Information
Integration Agents(IIAs). Unlike our system, it uses

inference to generate global view. In general, [8] and our
architecture covert XML schemas/DTDs to their equivalent
trees and integrate those trees by running some operation.

3. Three-layer mediator architecture

The three-layer mediator architecture consists of the

presence, integration, and homogenization layers. The main
objective of designing the three-layer architecture is to
design a scalable, dynamic, fault-tolerant, secure system in
which work load is distributed over chains of connected
mediator A system that is able deal with the heterogeneous
nature of data sources as well as that of the client devices
that access them.

Figure 1: Three-Layer Mediator Architecture

3.1 The Architecture

Mediators form a virtual database between client and

data stores [11]. The path from the client to the desired
data source(s) will comprise a series of mediators. This
path forms a tree with which the data is integrated. Our
system has been designed to give a high degree of
autonomy to the data sources. This gives the data stores the
freedom to join and leave the federation of mediated
databases as they wish. This also allows the individual data
stores to modify, maintain their content and schemas
independently. The system thus exhibits a behavior that is
similar to peer-to-peer (P2P) architectures. Due to the
dynamic nature of the topology, this path from the client to
the data stores that forms the mediation tree cannot be static
but must be dynamically constructed during the search.

Cop
y R

igh
ts

This dynamic construction also allows the mediators to
form a path that best meets the QoS requirements of the
client application.

Our research is focused on a dynamic mediation
architecture that attempts to homogenize low layer data
sources while meeting the QoS requirements of the
heterogeneous client devices at the top layer. The presence
layer is the interface to the client, which can be any
computing device such as a PC, a PDA, or any special
purpose devices. Caching and buffering data streams are
some of the functions performed in this layer. The
integration layer functions include analyzing queries,
finding appropriate data sources, and forming the
Integration Data-Structure Graph. In the homogenization
layer, translation of heterogeneous data sources into XML
format is done [5, 13, 12].

Within this architecture, we differentiate between three
kinds of mediators. They are, the presence-mediators
deployed in the presence layer, the mediator-composers
deployed in the integration layer, and mediator-connectors
in the homogenization layer. For the rest of this writing, we
will refer to mediator-composers and mediator-connectors
as composers and connectors, respectively. The client first
connects to a presence-mediator which will perform
presence layer functions. The presence-mediator will elect a
special kind of composer called the global-mediator; this
global-mediator will be responsible for the particular query
for which it was elected. It will be responsible for
composing the path from the client to the data sources that
represents the tree for the composition of the query result.
A new global-mediator is elected for every new request
based on predefined QoS criteria [12].

At the lowest level of the mediator hierarchy, connectors
connect to the actual databases and are the interface
through which these data sources are accessed. Unlike
composers, connectors will not play any role in routing a
request. They map the local database schemas to XML
schemas and convert their data according to those XML
schemas.

Upon receipt of a query, the global-mediator forwards
the request to other composers in order to find the results.
It uses the DHT, which is implemented in the composer, to
determine which composers to send the queries to [12].
More than one composer will need to cooperate to handle a
single request. Once the desired connector, which maps the
requested data, is reached, the Global Integrated Data-
Structure Graph (GIDSG) will be composed by the global-
mediator, and this tree will be used to integrate data from
multiple sources and accessing those sources.

3.2 Handling a request in the three-layer
architecture

When a presence-mediator receives a request, it starts an

election to choose the most suitable composer to act as
global-mediator to that request. The presence-mediator then

converts the client request into XML document and
forwards the XML document to the global-mediator. After
that, the presence-mediator will wait until it receives a
response from the global-mediator.

The global-mediator will coordinate with other
mediator-composers to find path(s) from the global-
mediator to mediator-connector(s) which map the required
data. First, the global-mediator will break the request into
tokens, a sequence of digits and characters. It will then try
to match these tokens with some tags (elements' identifiers)
in the stored XML schema. Recall that the tags in the
integration layer are distributed and maintained by the
DHT. After the decomposition process ends, the
coordinated composers will return the corresponding XML
trees and their connectors' addresses.

The composers which decompose the schema will
contact the connectors to get the best sub-tree(s)
corresponding to its XML schema. Since the data may be
distributed over many connectors, the composers will
integrate those sub-trees into one tree. The basic idea in the
integration is to find the corresponding trees which are
stored in the connectors and, then, to create dependency
relations between the nodes in the retrieved trees based on
the mapping rules stored in the connectors. At the end of
this process, the global-mediator will have the Global
Integrated Data-Structure Graph (GIDSG) and the IP
addresses of the corresponding connectors.

3.3 Using a DHT in the architecture

All composers need to cooperate in order to find the

connector(s) to the desired data source(s). In order to find
the connector(s), the route from the global-mediator
through composers can be found using DHT instead of
having a central repository of the connectors' XML
schemas. Although it is possible to use one of the
aforementioned DHT algorithms by defining what values
will be mapped, we elected to build a hybrid algorithm of
Chord and Pastry: this new algorithm maintains some
features of both but adds important Quality of Service
(QoS) criteria.

Unlike CFS [4] which is a file storage for blocks based
on Chord, and PAST [17] which is a file storage for files
based on Pastry, the mediator does not distribute the data in
the data sources among the composers. The mediator
system needs only to distribute pointers to the data which
will be accessed through connectors. Hence, the first level
of security is implemented in the connector, so only clients
with right permissions can retrieve the XML schemas from
the connectors and then access the data through the
connectors.

Composers are distributed on a logical ring, like Chord.
Unlike Chord, the composers maintain successor list,
predecessor list, finger table, and a cache. This cache
contains information about composer with links to recently
accessed connectors. The cache is useful because, although

Cop
y R

igh
ts

this mediation architecture is flexible, mediators should be
domain specific. In a specific domain therefore, there will
be some keywords that are frequently used in queries. For
instance, in a medical environment, words like patient,
name, xray, insurance, and so on will be repeated
frequently. The cache maintains a short list of the keywords
with the highest frequency of occurrence in queries.

In our architecture, each composer maintains some
keywords which are tags in XML schemas stored in some
connectors. When a system administrator adds a new data
source by starting a new connector, the connector will
convert the schema for its data source into an XML
schema. This schema is then sent to a composer. The
receiving composer will covert the XML schema into its
corresponding tree. Next, a hash function is used to map the
XML tags (elements) which are now nodes in the tree onto
keys which will be distributed over the peers.

Figure 2: An XML schema of a data source

Figure 3: the equivalent tree of the schema in
Figure 2 of the data source 1

3.4 Integration Process

When a new connector joins the system, the connector

will submit its XML schema to a composer. The composer
will tokenize the XML schema and run the hash function
on these tokens. Then, it will add those tokens as new keys
into the DHT. The values of the elements and attributes
fields in XML documents are used as tokens. For instance,
given a class record: ssn, name, case (diagnosis, test),
address, the equivalent XML schema would be as in Figure
2.

Besides the schema of the data source, all connectors
will also contain their mapping rules as XML documents.
These mapping rules will be used to create associations
among tokens from different schemas. This process is
explained by an example in the next section.

4. Example

Connectors generate XML schema (shown here in tree

fashion). Composers then distribute the nodes of those trees
among the composers using a DHT algorithm. Let us
assume that in a mediation system we have two data
sources and six composers. On top of each data source,
there must be a connector, so there are two connectors
(Connector1 and Connector2). Connector1 maintains the
schema in Figure 2 which has the tree representation of
Figure 3 and all the mapping rules, and Connector2
maintains the schema in Figure 4.

Figure 4: the tree representation of the schema
of the data source 2

For the sake of simplifying the example, we assume that

the composers are distributed over a logical ring in which
each composer knows its successor node. When a composer
receives a request, it will either find the requested
keywords in its DHT or else it forwards the keywords to its
successor.

Figure 5: A mapping rule of name into firstname
and lastname.

The mapping rules are represented in XML documents

which contain the following information; the target data
source and the destination data source, the attributes, and
operation on attributes. For instance, Figure 5 represents
mapping rule for the “name” keyword for data source 1 into
the concatenation of the firstname and the lastname in the

<xs:schema">
<xs:element name="record ">
<xs:complexType>
 <xs:attribute name = "SSN" type="xs:string">
 <xs:attribute name="name" type="xs:string">
 <xs:element name="case">
 <"xs: complexType">
 <xs:attribute name = "diagnosis" type="xs:string">
 <xs:attribute name="test" type="xs: hexBinary ">
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
</xs:schema>

record

SSN name case

diagnosis test

address

<mapping>
 <Source1>
 <DB>Data Source 1</DB>
 <ATTR>name</ATTR> </Source1>
 <Source2>
 <DB>Data Source 2</DB>
 <ATTR>firstname</ATTR> </Source>
 <op>CONCAT</op>
 <ATTR>lastname</ATTR> </Source>
</mapping>

Cop
y R

igh
ts

data source 2. The values of the attributes are considered as
tokens and are distributed over the composers.

Figure 6: six composers maintain the tokens of
the schema of data source1, data source2 and the

mapping rules.

Prior to distribution, a hash function is run over the

tokens to generate their key values. The generated keys of
the tokens are then distributed over the composers. The
range of keys assigned to each composer is determined by
the hash value of that composer’s unique identifier. This
identifier could be an IP address and the hash value is
generated by running a hash function on that IP address.
Thus, in our example (Figure 6) the composers contain
tokens with key values in their id ranges. For instance,
Composer # 1000 contains tokens with key values (0,
1000]. In Figure 6, the tables contain three columns: the
tokens, the key values of the tokens and the connector ids.
The first column was added for clarity. In practice this
column is not necessary.

Figure 7: An example of a request generated by
a presence mediator

Assume that the request in Figure 7 is generated by a

presence mediator. The values “name”, “diagnosis”, “test”,
and “address” are tokens that will be lookup in the
composers’ DHTs. If Composer # 5000 (in Figure 6) was
elected as a global mediator, then Composer # 5000 will
lookup its DHT for any of the tokens. If the only token
found is “address”, the rest of the tokens will be forwarded
to the next composer # 0000. The search process will

continue until all tokens are found, or the initiating
composer is reached. Table 1 shows the sequence of the
searching.

The global mediator will use this information to retrieve
the required schema from the connectors. In our example,
the global mediator will contact Connector1 and retrieve
the tree in Figure 3. Because some of the mapping rules
stored in Connector1 point to data source 2, the global
mediator will retrieve the schema in Figure 4 from
Connector2. Both schema of Figure 3 and Figure 4 will be
linked together using the mapping rules. As a result, the
Global Integrated Data Structure Graph GIDSG in Figure 8
will be generated. It will include all the necessary
associations.

Table 1: the steps in which the tokens were
found and the destination connector(s).

Seq Composer
key

Keyword
value

Keyword
key

Connector
ID

2 0000 name 5853 1

3 1000 diagnosis 0365 1

4 2000 test 1364 1

1 5000 address 4563 1

Figure 8: Global Integrated Data Structure Graph

5. Conclusion

In this paper we report a technique where a composer in

the 3-layer mediation architecture builds the Integrated
Data Structure Graph (IDSG) on-the-fly in the integration
layer. A special composer called Global Mediator adds
associations and refines the IDSG generating a Global
IDSG (GIDSG) which will be used to retrieve data from
connectors which are employed on top of data sources and
integrate the data. Then, integrated data will be sent to the
presence mediator to present the result to the client. In our
architecture the IDSG is dynamically built instead of
maintaining a global view, and the data integration process
is delayed to a later stage of the integration phase to
minimize network traffic in the system.

5000

0000
1 5555 xray

2 5555 xray

2 5562 Case

1 5562 case

1 5853 name

1000

1 0569 SSNum

2 0569 SSNum

1 0365 diagnosis

1 0123 record

3000

1 2658 firstname

2 2658 firstname

2000
2 1888 disease

1 1364 test

4000

1 4000 lastname

2 4000 lastname

1 3650 SSN

1 4556 patient

2 4556 patient

1 4563 address

<xs:element name="request">
<xs:complexType>
 <xs:attribute name = "name">
 <xs:attribute name="diagnosis”>
 <xs:attribute name="test”>
 <xs:attribute name="address” value= “Miami,FL”>
</xs:complexType>
</xs:element>

record

SSN name case

diagnosis test

address

patient

SSNum firdtname lastname

disease xray

case

concat

is

is

is

Miami, FL

value

Cop
y R

igh
ts

Acknowledgements

This material is based on work supported by the
National Science Foundation under Grant No. HRD-
0317692.

References

[1] Serge Abiteboul, Sophie Cluet, and Tova Milo,
“Correspondence and translation for heterogeneous data.”,
In Proceedings of Database Theory -ICDT '97, 6th
International Conference, volume 1186 of Lecture Notes in
Computer Science, Springer, Delphi, Greece, January 1997.

 [2] Hari Balakrishnan, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica, “Looking up data in p2p
systems”, Communications of the ACM, 46(2), February
2003.

[3] Peter Buneman, Susan B. Davidson, and Dan Suciu,
“Programming constructs for unstructured data.”, In
Proceedings of the Fifth International Workshop on
Database Programming Languages, Gubbio, Umbria, Italy,
September 1995.

[4] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica, “Wide-area cooperative
storage with CFS”, In Proc. of the 18th ACM Symposium
on Operating Systems Principles (SOSP '01), Chateau Lake
Louise, Alberta, Canada, October 2001.

[5] Raimund K. Ege, Li Yang, Qasem Kharma, and
Xudong Ni, “XML based multimedia delivery framework
for telecommunications environments.”, In International
Symposium on Parallel Architectures, Algorithms, and
Networks (I-SPAN), IEEE Computer Society Press , Hong
Kong, May 2004.

[6] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, Y. D. Ullman, V. Vassalos, and J.
Widom, “The TSIMMIS approach to mediation: Data
models and languages.”, Journal of Intelligent Information
Systems, 8(2), March 1997, pp. 117-132.

[7] Krishna P. Gummadi, Ramakrishna Gummadi, Steven
D. Gribble, Sylvia Ratnasamy, Scott Shenker, and Ion
Stoica, “The impact of DHT routing geometry on resilience
and proximity”, In Proc. of ACM SIGCOMM, August 2003.

[8] Euna Jeong and Chun-Nan Hsu. “Induction of
integrated view for XML data with heterogeneous DTDs.”,
In Proceedings of the tenth international conference on
Information and knowledge management, Atlanta,
Georgia, Oct 2001, pp. 151-158.

[9] V. Josifovski and T. Risch, “Comparison of AMOS II
with other integration projects”, Technical report,
EDSLAB/IDA, Linkping University, April 1999.

[10] M. Karjalainen, “Integrating heterogenous databases
with the functional data model approach”, Technical report,

January 2004,
http://www.cs.chalmers.se/~merjaka/report04d.pdf/.

[11] Timour Katchaounov, “Query Processing for Peer
Mediator Databases”, Dissertation, Uppsala University,
2003.

[12] Qasem Kharma and Raimund K.Ege, “The impact of
using DHT in 3-layered mediator framework”, In
International Conference on Telecomputing and
Information Technology (ICTIT), Amman, Jordan,
September 2004.

[13] Li Yang Onyeka Ezenwoye, Raimund K. Ege and
Qasem Kharma, “A mediation framework for multimedia
delivery”, In Third International Conference on Mobile and
Ubiquitous Multimedia (MUM2004), ACM, College Park,
Maryland, USA, October 2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A scalable content-addressable network.”, In
Proc. of ACM SIGCOMM, San Diego, CA, August 2001.

[15] T. Risch, V. Josifovski, and T. Katchaounov, “AMOS
II concepts”,
http://www.dis.uu.se/~udbl/amos/doc/amos_concepts.html,
June 2000.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable,
distributed object location and routing for large-scale peer-
to-peer systems”, In Proc. of the 18th IFIP/ACM Int'l Conf.
on Distributed Systems Platforms, Heidelberg, Germany,
November 2001.

[17] A. Rowstron and P. Druschel, “Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility”, In Proc. of the 18th ACM Symposium on
Operating Systems Principles (SOSP '01), Chateau Lake
Louise, Alberta, Canada, October 2001.

[18] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications”, In Proc. of
ACM SIGCOMM, San Diego, August 2001.

[19] Anthony Tomasic, Louiqa Raschid, and Patrick
Valduriez, “Scaling access to heterogeneous data sources
with DISCO”, IEEE Transactions on Knowledge and Data
Engineering, volume 10, September 1998, pp. 808-823.

[20] Gio Wiederhold, “Mediators in the architecture of
future information systems”, IEEE Computer, Volume 25,
March 1992, pp. 38-49.

[21] Ling Ling Yan, M.T. Ozsu, and Ling Liu, “Accessing
heterogeneous data through homogenization and integration
mediators.”, In Proceedings of the Second IFCIS
International Conference on Cooperative Information
Systems, Kiawah Island, SC, Jun 1997, pp 130-139.

Cop
y R

igh
ts

